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Abstract

This study investigated the sensitivity of the solutions of perturbed linear systems of
ordinary differential equations. To achieve this, the concepts of matrix norms, condition
numbers and conditioning were first explored. Sequel to this, we demonstrated the validity
of perturbation theory by applying it to solve an algebraic equation and a standard second
order ordinary differential equation, namely, the harmonic oscillator equation, and compar-
ing the results to their corresponding exact solutions. We then examined the effects of small
perturbations in the coefficient matrices of linear systems of algebraic and differential equa-
tions to the solution vectors. The idea of matrix norms was applied to obtain the condition
numbers which were in turn used to measure the sensitivity of the linear systems. We found
that the systems whose associated matrices have large condition numbers are usually very

sensitive to small perturbations while the reverse is the case for low condition numbers.

Keywords: Sensitivity of solutions, matrix norm, perturbation theory, harmonic oscillator,

condition number, conditioning.

1 Introduction

Perturbation theory is an approach to finding an approximate solution to a problem, by starting
from the exact solution of a related, simpler problem [5]. It uses the fact that several complicated
real life problems which are not exactly solvable contain some small parameter(s) € (say), which
can be set to zero to make the equations exactly solvable, and that the approximate solutions
of these complicated problems can be obtained from the exact solutions of the ideal ones. This
method was first proposed for the solution of problems in celestial mechanics, in the context of
the motions of planets in the solar system [1]. It was later extended and generalized by several
notable 18th and 19th century mathematicians such as Lagrange and Laplace as a result of its
incremental demand in the accuracy of solutions to Newton’s gravitational equations [2].
Recently, perturbation theory has been gaining much popularity and it is a very broad
subject with applications in many areas of the physical sciences, see e.g. [1], [7] and [¢]. It
is successful in solving a wide range of both algebraic and differential equations analytically.

Consider, for instance, the problem of approximating the perturbed equation
z? —3x4+24=0 (1.1)

which depends on a small parameter €, 0 < € < 1, from the exact solution of the unperturbed
equation
2 —3x4+2=0 (1:2)
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obtained by setting € =0 in (1.1).
Consider also the problem of approximating the damped harmonic oscillator equation given

by
& e+ a=:0 (1.3)

from the exact solution of the undamped harmonic oscillator given by

r+ax=0 (1.4)

obtained by setting € = 0 in (1.3).
Again, consider the problem of finding an approximate solution to the perturbed linear

system of first order ordinary differential equations given by

xr £ 4 x1 ]
(:m):(s —0.1><$2) (1.5)

from the unperturbed system given by

d\ (0 4 5 ‘
(352)_(5 —o.1>(12) (1.6)

obtained by setting € = 0 in (1.5).

Now, the question is:

For small e, 0 < e < 1,
e “How well does (1.2) approximate (1.1)?”
e “How well does (1.4) approximate (1.3)?7”

e “How far do our solutions of the perturbed problem (1.5) go from the exact solutions of
the unperturbed one given by (1.6)7” In other words, “How sensitive are the solutions to

small perturbations in the coefficient matrix?”

e “Can we apply the idea of matrix norms to measure the sensitivity of solutions of systems

of equations to small perturbations in the coefficient matrices?”

It is these questions that this study is poised to provide answers to.

2 Matrix norms, condition number and conditioning

2.1 Matrix norms

Definition 2.1. /9, //]. A matriz norm, || - || is a function || - || : C"™*"™ — R such that for all
A, B € C"™" gnd o« € C we have

(la) ||A|| =0 Nonnegativity
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(Ib) ||A||=0 ifandonlyif A=0 Positivity
(2) ||eA|| = || ||A]] Homogeneity
(3) ||[A+B|| < ||A4]l+ ||B]| Triangle Inequality (subadditivity).

The most frequently used matrix norms are the Frobenius norm and the p-norms, see e.g.
(6]
The Frobenius(Schur or Hilbert-Schmidt) norm][)]
The Frobenius norm ||A||p is defined such that
1/2

n

NAllr = [ D lai;|

o |

The p-norms|]
The matrix p-norms for p = 1,2 and oo are defined as follows.

m

[|[Al[1 = max Z la;j|  (the maximum absolute column sum)
=1,..m—
n
||Al]occ =  me Z |aij| (the maximum absolute row sum)
i=1,...,m =
[|A||l2 = v/ Anaz (AT A)  (spectral norm)

where A\naz(AT A) is the largest eigenvalue of AT A.

Example:

—_9
Let A= 3 s
0 —4
-2 0 -2 3 4 —6
Then AT A = —
3 —4 0O —4 —6 25

and the eigenvalues are A1 = 26.59 and A3 = 2.41 so that
[|Allr = max{| — 2|+ 0], 3| +|— 4]} =7

| Alloo = max{| — 2| +|3],|0] + | — 4|} =5

[|4]|2 = /max{26.59,2.41} = 5.16

I|AllF = v/(=2)% + 32 + 0% + (—4)2 = 5.39
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2.2 Condition number

Definition 2.2. [9, /”]. The condition number of a nonsingular matriz A is given by
k(A) = ||A]l [|A7H].

An alternative notation for the condition number of a matrix A is cond(A). Different norms
can be used to evaluate the condition number of a matrix. For this reason, the notation is
usually modified to indicate the norm being used, for example if we use the infinity norm, then
we can write

koo(A4) = ||Allo [[A7[oo-
For every invertible matrix A € M,,(C), the following properties of the condition number hold:
1. k(A) =1
2. k(A) =k(A™))
3. k(aA) = k(A) for all o € C\ {0}.

See e.g. [10].
Following the definition of condition number, one can easily compute the condition number

of a matrix as illustrated in the example below.

Example:

Use the norm indicated to calculate the condition number of the following matrices.

) 2 3
i. A= : 1-norm
4 6.1

1 1 1
ii. B = 1 -1 2 ; infinity-norm
2 0 -3
Solution
2 3
i A=
4 6.1

||A||1 = max(2+4,3+6.1) =9.1,

41 (305 —15
—20 10
= ||A7Y|; = max(30.5 + 20,15 + 10) = 50.5.

Therefore k1(A) = ||A||1 [|[A7|l1 = 9.1 x 50.5 = 459.55
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1 1 1
ii. B = 1 -1 2
2 0 =3
[[Blit =max(1+1+1,1+1+2,2+0+ 3) =5,
1 1 1
1 1 1
-1 _ 7 5 1
BY=| 13 1B 1w
1 1 .
6 6 6
By — ms 1+1+11 5 il 1 1 _13
B lh=max| 7+ 3+ 5+ 3+t s) —
Therefore koo(B) = || Bl|oo ||B™]|oo = 5 % i—3 = 6—3

2.3 Conditioning

(i) (2)-()

5
with the solution z = ( 16 —10 ) . If we perturb slightly the left hand side and have

(&a)(2)-C)

T
then our new solution becomes z = ( —-32 22 ) which is very far from the solution of (2.1).

2 3 1\ [ 2 >
(10)(2)-(5) e

obtained by simply changing the coefficient 6.1 in (2.1) to 6 results in the total loss of the

Conmnsider the linear system

Again, system (2.3)

solution. This is a drastic change in the solution and we say that the system is very sensitive to
small perturbations in the inputs. A system of this nature is called ill-conditioned. If small
perturbations in the inputs of a linear system lead to a small change in the solution, then the
system is called well-conditioned, otherwise it is ill-conditioned. This property of a linear
system is termed the “conditioning” of the system and is determined by the condition number
of the associated matrix. When the condition number of a matrix A is low, then the problem

involving A is well-conditioned, otherwise it is ill-conditioned, see e.g. [3, 9, 10, 11].

3 Perturbation theory

In this section, we demonstrate the validity of perturbation theory by applying it to solve
the algebraic equation 2 — 32z +2 + & = 0 given by (1.1) and the harmonic oscillator equation
Z+ex+x = 0 given by (1.3). We shall obtain the exact solutions of their respective unperturbed
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equations and compare them with the perturbation solutions. With their graphs plotted, it will

be easy for one to see how well the method of perturbation approximates solutions.
3.1 Algebraic equation
To solve the algebraic equation
22 —3zx+2+4e=0, 0<e<x1,
we assume that the roots have the following expansion:
x =x0+ ex1 + 29 + - - - (3.1)
Then by substitution we have:
(wo+ex1 +2x0+--- )2 —3(wo+ €21 + 20+ --- )+ 24+ =0.
Simplifying further and dropping higher powers of £ gives:
x% + 2exqx) + 2&‘2x0x2 — 52.1:% — 3xg — 3exy — 3521'2 +2+4+e+---=0.
Collecting the powers of £ together gives:
(z& — 30 + 2) + e(2zox1 — 321 + 1) + £2(2x0x1 + 25 — 3w2) + - - = 0.

Equating the coefficient of each power of £ to zero gives:

g9 : x%—3$o+2=0=>:co=1 or xg= 2.

gl . 2zox1 — 321 +1 =0

from which we have 1 = 1 for g = 1 and x; = —1 for zg = 2.

2. x%+2xox1—31‘2=0

from which we have 9 =1 for z9p =1 and 1 = 1; and 22 = —1 for g = 2 and 1 = —1.

Thus, (zo,z1,22) = (1,1,1) or (2,—-1,-1).

By substituting these values into (3.1) we have:

BB e forrr: B B0 BB Yome s

We could solve 22 — 32 + 2 + £ = 0 with the quadratic formula to obtain:

T_3:|:\/1—4s

> (3.2)

and we know from Taylor’s series that /T — 4 = 1 — 2 — 2% + - - - so that by substituting this
into (3.2) we have:
Y 3+(1—-2e—2e24...)
2
= z=14e+€>+--+ or z=2—€—€24---
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which corresponds with the above solution.

Now, if we find the exact solution of the unperturbed equation z? — 3z + 2 = 0, we will
obtain that x =1 or = 2.

Comparing the perturbation solution and the exact solution, one sees that if we set £ = 0,
the two solutions become the same. For small €, 0 < ¢ < 1 as supposed, the perturbation
solution only deviates slightly from the exact solution. For example, if we set € = 0.01, then we

have z = 1.0101 or x = 1.9899.

s A

unperturbed

perturbed

2

Figure 1: Graph of perturbed and unperturbed algebraic equation
From the graph, we see that for small €, 0 < £ < 1, the solution to the unperturbed equation
given by (1.2) is a good approximation to that of the perturbed given by (1.1).
3.2 Damped harmonic oscillator

Here, we approximate the damped harmonic oscillator equation @+ sz + x = 0 given by (1.3) by
perturbation method using the exact solution of the undamped harmonic oscillator # + x = 0
given by (1.4).

Suppose we have the initial value problem
r+ecx+ax=0 ; x(0)=0 , =z(0)=1.
Then by perturbation, we assume that the solution has the following expansion:
z(t) = xg + ex + 29+ - - - (3.3)

So that
&(t) = o + a1 + €2d2 + - - -
&(t) = Zo + ed1 + €2 + - - .

By substituting these into the given initial value problem, we have:

(20 + €1 + €282+ -+ ) +e(do + k1 + €2@2 + -+ - ) + w0 + £x1 + 222 + - - - = 0.
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Collecting the powers of € together gives:
(Zo + xo) + (20 + 21 + 1) +52(§52 +x1 +a2)+ - =0.

Equating the coefficient of each power of € to zero gives:

Coefficients of €9 : o+ x0=0.

By solving the characteristic equation 72 + 1 = 0, we have that
R X
— 29 = Acost + Bsint
ro = —Asint + B cost.
Applying the initial conditions gives:
z(0) =0 = A=0

#(0)=1 — B=1.

Therefore,
xp = sint
= xg = cost.
Coefficients of ! : zog+x1+31 =0

= cost+x1 +21 =0

1 +x1 = —cost

from which one quickly sees that the complementary function is 21, = Acost + Bsint.

For the particular integral, we let
1, = Ctcost + Dtsint
= w1, = —Ctsint + Ccost + Dt cost + Dsint
:'irlp = —Ctcost — 2Csint — Dtsint + 2D cost.
By substituting these values into (3.5), we have:
—Ctcost —2C'sint — Dtsint + 2D cost + Ctcost + Dtsint = — cost
= 2D cost — 2C'sint = — cost.

By comparing coefficients, we have:

C:OandD:—%.
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And so,
rl, = — %t sint.
But

Tl =T, + Tl,.

Therefore,

1
x1 = Acost + Bsint — ﬁtsint
: 2 1 L
1 = —Asint+ Bcost — étcost — 5 sin t.
Applying the initial conditions gives:

1
1 =sint — Et sint (3.6)

— o] = cost — —tcost — —sint.
! 2 2
Coefficients of £2 : Zo+ a1 +a22=0

s 1 T .
— @9 +cost — Etcost— Esmt—l—zg =0

.. 1 1. y
To + a9 = §t cost + 3 sint — cost (3.7)

from which we have the complementary function z2, = Acost + Bsint.

For the particular integral, we assume
xz2, = (Ct? + Dt) cost + (Et? + Ft)sint
= @, = —(Ct? + Dt)sint + (2Ct + D) cost + (Et*> + Ft) cost + (2Et + F)sint
@y, = —(Ct? + Dt)cost — (2Ct + D) sint — (2Ct + D) sint + 2C cost — (Et? + Ft)sint
+(2Et + F)cost + (2Et + F)cost +2FE sint.

By substituting these values into (3.7), we have:
—(Ct2 + Dt) cost — (2Ct+ D) sint — (2Ct+ D) sin t +2C cost — (Et? + Ft) sint + (2Et + F) cos t

+(2Et + F)cost +2FEsint + (C’t2 + Dt)cost + (Et? + Ft)sint = %tcost + % sint — cost
which simplifies to

—4Ctsint +4Ftcost + (—2D + 2E)sint + (2C + 2F) cost = %t cost + % sint — cost.

By comparing coefficients, we have:

C =0, D=—1, E=1andF=—1.
8 8 2
And so,
1 Loy e .
x2, z—gtcost—l-(gt —§t)8111t.
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But

xr2 = T2, + X2,.
Therefore, . : i
x9 = Acost + Bsint — gtcost + (th — Et) sint
1 1 ¥ . 1 1 1
x9 = —Asint + Bcost + gtsint 3 cost + (gtz — §t) cost + (é_lt — §)sint.

Applying the initial conditions gives:

1 1, 1
xg =sint — gt cost + (gt2 — Et)sint (3.8)

= @9 = cost+ lts‘int — 1('ost - (lt2 — lt) cost + (lt - 1)sint
2— SOS 8»; 8 SOE 8 2 i 4 2 o .

So far, we have from (3.4), (3.6) and (3.8) the following solutions:

xg =sint
xr] =sint — 1t sint
2
r9 = sint — 1tcost — (lt2 — l25)5in %
8 8 2

Substituting these values into (3.3) gives:

z(t) = sint + g(sint — %t sint) + 2[sint — %t cost + (%t2 — %1‘) sint] +--- .
The unperturbed problem
Z2+x=0 ; z(0)=0 , =z(0)=1
has the exact solution
z(t) = sin t.

Comparing the perturbation solution and the exact solution, one sees that if we set £ = 0, the

two solutions become the same.

XN
1 4
f7 = N
N\ = unperturbed
o - perturbed
0 T >
™ 3 T S 3 7 T 9 ¢
z 2 2 2 2
-0.5
&~

s

Figure 2: Damped and undamped harmonic oscillator equation for 0 < ¢ < %71’
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(O
— unpercurbed

- = perturbed

0.5

-14
Figure 3: Damped and undamped harmonic oscillator equation for 22971' <t <20

From the graphs, we observe that the exact solution of the unperturbed problem (i.e. un-
damped harmonic oscillator equation) given by (1.4) is a good approximation to the perturbed
one (i.e. damped harmonic oscillator equation) given by (1.3) for a considerable period of time.
For example, on the interval 0 < ¢ < %w, the deviation of the perturbation solution from the ex-
act one is insignificant. But if one waits long enough, for example, on the interval %ﬂ' <t < 20m,
the deviation becomes appreciable. This is due to the fact that the amplitude of the damped one
keeps decreasing with time while that of the undamped remains constant. Hence, we conclude
that the method of perturbation is an effective tool for handling problems of this nature which

are more often than not encountered in real life.

4 Perturbation of linear systems

In this section, we examine the effects of small perturbations in the coefficient matrices of linear
systems to the solution vectors. It is known that some systems are very sensitive in the sense
that small perturbations in the coefficient matrices trigger off large changes in the solution
vectors whereas the reverse is the case for some others, see e.g. [L1, 3]. We will find out how
this is connected to the matrix norms of the associated matrices. We begin with systems of
algebraic equations and then move on to systems of ordinary differential equations which form

an integral part of this study.

4.1 Systems of algebraic equations

40 20.1 xp [ 241
80 40.1 o 481

T
whose solution vector is x = ( 1 10 ) . Now, suppose we have the perturbed system

40 +¢ 20.1 z1\ [ 241
80  40.1 xz2 )\ 481

and set € = 0.1, then the resulting system becomes

40.1 20.1 x| [ 241
80 40.1 ) 481

Conmnsider the linear system
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T
with the solution vector x = ( —400 810 ) . This is a drastic change in the solution vector.

Hence, we say that the solution is very sensitive to small perturbations in the coefficient matrix.
40 20.1

Now, we compute the condition number of the matrix A = ( -
8 :

) and see its rela-
tionship with this high sensitivity.

Using the 1-norm, we have:

[|A||1 = max(40 + 80,20.1 + 40) = 120

41 _ [ —10.025 5025
20 —10

= ||A7!||; = max(10.025 + 20,5.025 + 10) = 30.025.

Therefore, k1(A) = ||A||1 ||A7||1 = 120 x 30.025 = 3603
Thus, the condition number is large and the solution is very sensitive.

Consider also the linear system

(o 5)(2)-(5)

T
This system has the solution vector = ( 1 1 ) . Suppose we have the perturbed system

e 40 z 40 .
= i and set £ = 0.1, then the resulting system becomes

50 —1 x9
0.1 40 a1\ [ 40
50 —1 xo )\ 49

T
with the solution vector x = ( 0.99995 0.99750 ) . In this case, we see that the solution is

not very sensitive to small changes made in the coeflicient matrix.
0 40

Now, we compute the condition number of the matrix A = ( o i
50 —

) using the l-norm,

as follows:

[|Al[1 = max(0 + 50,40 + 1) = 50

-1 _ ( 00005 0.02
0.025 0
— ||A7}||; = max(0.0005 + 0.025,0.02 + 0) = 0.0255.

Therefore, k1 (A) = ||A4]|1 ||A7||1 = 50 x 0.0255 = 1.275

Thus, the condition number is small and the solution is not very sensitive.
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4.2 Systems of ordinary differential equations

Consider the linear system of first order ordinary differential equations

. 4 2.1 x
=
8 4.1 xr9
whose general solution is

1 — ! 6_0'0491'+02 1 £8:1491¢
T2 1.9281 1.9756

) 44+ 2.1 x
Suppose we have the perturbed system z = " ii and set € = 0.1, then the
. x9

. 41 21 1
e
8 41 2
with the general solution

Z 1 -1 .
1 — i £B8-1988¢ & £0-0012¢
x2 1.9518 1.9518

And we see that the solution is very sensitive to small perturbations in the coefficient matrix.
4 21
8 4.1

resulting system becomes

We compute the condition number of the matrix A = < ) using the l-norm as

follows:
||All1 = max(4 + 8,2.1 +4) = 12

41— [ 1025 525
20  —10

= ||A™!||; = max(10.25 + 20,5.25 + 10) = 30.25.

Therefore, k1(A) = ||A||1 ||A™Y||1 = 12 x 30.25 = 363

Thus, the condition number is large and the solution is very sensitive.

Now, we consider the unperturbed linear system

(5 ) (2)

described by (1.6) above whose general solution is

. =c1 1 eta24t o, 1 o—4.5224t
€2 1.1056 1.1306
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€ 4 -
Also, consider the perturbed system z = ( 0.1 ) ( w1 ) described by (1.5) above. If we
5 —0. x2

set € = 0.1, then the resulting system becomes

g 0.1 4 x]
T =
5 —=0.1 T2
with the general solution

1 = ec1 1 AT - —1 o—4-4733t
2 1.0933 1.1433

And we see that the solution is not very sensitive to small perturbations in the coeflicient matrix.
0 4

We compute the condition number of the matrix A = ( 01
5 —0.

) using the l-norm as

follows:

[|[Al[1 = max(0+5,4+0.1) =5
o1 _ (0005 0.2
025 0
— ||AY]|; = max(0.005 + 0.25,0.2 + 0) = 0.255.

Therefore, k1(A) = ||A||]1 ||A7Y||1 =5 x 0.255 = 1.275

Thus, the condition number is small and the solution is not very sensitive.

5 Conclusion

We have discussed the concepts of matrix norms, condition numbers, perturbation theory and
their applications in sensitivity analysis of the solutions of perturbed linear systems. At first, we
found that the method of perturbation is a powerful tool for finding an approximate analytical
solution to both algebraic and differential equations. The results obtained by plotting the graphs
of the perturbation and exact solutions of both the algebraic and differential equations show a
negligible difference between the two equations. Although, for the harmonic oscillator equation,
the difference becomes appreciable over time due to the fact that the amplitude of the damped
one keeps decreasing with time while that of the undamped remains constant.

Furthermore, the study indicates that the systems of equations whose associated matrices
have large condition numbers are usually very sensitive to small perturbations while the reverse

is the case for low condition numbers which is in conformity with previous studies.
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